Metal-free, noncovalent catalysis of diels-alder reactions by neutral hydrogen bond donors in organic solvents and in water.

نویسندگان

  • Alexander Wittkopp
  • Peter R Schreiner
چکیده

We examined the catalytic activity of substituted thioureas in a series of Diels-Alder reactions and 1,3-dipolar cycloadditions. The kinetic data reveal that the observed accelerations in the relative rates are more dependent on the thiourea substituents than on the reactants or solvent. Although the catalytic effectiveness is the strongest in noncoordinating, nonpolar solvents, such as cyclohexane, it is also present in highly coordinating polar solvents, such as water. In 1,3-dipolar cycloadditions, the thiourea catalysts demonstrate only very moderate selectivity for reactions with inverse electron demand. Our experiments emphasize that both hydrophobic and polar interactions can co-exist, making these catalysts active, even in highly coordinating solvents. This class of catalysts increases the reaction rates and endo-selectivities of Diels-Alder reactions, in a similar manner to weak Lewis acids, without concomitant product inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptation of a Small-Molecule Hydrogen-Bond Donor Catalyst to an Enantioselective Hetero-Diels–Alder Reaction Hypothesized for Brevianamide Biosynthesis

Chiral diamine-derived hydrogen-bond donors were evaluated for their ability to effect stereocontrol in an intramolecular hetero-Diels-Alder (HDA) reaction hypothesized in the biosynthesis of brevianamides A and B. Collectively, these results provide proof of principle that small-molecule hydrogen-bond catalysis, if even based on a hypothetical biosynthesis construct, holds significant potentia...

متن کامل

Acceleration of Diels-Alder Reaction in Aqueous Fluorinated Micelles and Droplets: An Application for Electrolytic Cycloadditions

During the last two decades, organic reactions in aqueous media have been attracting increasing attention. Furthermore, It has been established that some DielsAlder reaction dramatically accelerated in aqueous media. These have been alternatively ascribed to hydrophobic association of the reacting partners, micellar catalysis, solvophobicity, high internal solvent pressure, cohesive energy dens...

متن کامل

Diels–Alder reactions in water*

This review illustrates how water, as an environmentally friendly solvent, can have significant additional benefits when it is used as a solvent for the Diels–Alder reaction. The mechanism by which the unique properties of water enhance the rate and selectivity are discussed. Also, possibilities for the achievement of further increases in rate and enantioselectivity of aqueous Diels–Alder react...

متن کامل

A competitive Diels-Alder/1, 3-dipolar cycloaddition reaction of1-H-imidazole 3-oxide toward sulfonyl methane. A DFT study on the energetic and regioselectivity

The dual diene/1,3-dipolar character of 1-H-imidazole 3-oxide, HIO 1, allows this compound toparticipate in a competitive Diels-Alder (DA)/1,3-dipolar cycloaddition (13DC) reaction toward C=Sdouble bond of the electro-deficient sulfonyl methane SFM 2. The B3LYP/6-311++G(d,p) calculatedrelative Gibbs free energies indicate that among the studied 13DC and DA reactions, former iscompletely preferr...

متن کامل

Enantio- and periselective nitroalkene Diels-Alder reactions catalyzed by helical-chiral hydrogen bond donor catalysts.

Helical-chiral double hydrogen bond donor catalysts promote the nitroalkene Diels-Alder reaction in an enantio- and periselective manner. This represents the first asymmetric catalytic nitroalkene Diels-Alder reaction via LUMO-lowering catalysis. To gain an insight into this new process, the substrate scope of our catalyst was investigated by exploiting readily available 5-substituted pentameth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2003